

Mark Scheme (Results)

June 2024

Pearson Edexcel International Advanced Level In Chemistry (WCH14) Paper 01 Rates, Equilibria and Further Organic Chemistry

Section A

Question Number	Answer	Mark
1(a)	The only correct answer is A (colorimetry)	1
	 B is not correct because there is no change in mass C is not correct because titration is not a continuous monitoring method D is not correct because no gas is produced 	

Question Number	Answer	Mark
1(b)	The only correct answer is D (dm ⁹ mol ⁻³ s ⁻¹)	1
	 A is not correct because these are the units of rate B is not correct because these are the units of the rate constant for a second order reaction C is not correct because these are the units of the rate constant for a third order reaction 	

Question Number	Answer	Mark
1(c)	The only correct answer is D (1/16)	1
	A is not correct because the rate would change by this factor for an overall first order reaction	
	B is not correct because the rate would change by this factor for an overall second order reaction C is not correct because the rate would change by this factor for an overall third order reaction	

Question Number	Answer	Mark
1(d)	The only correct answer is C (Step 3)	1
	A is not correct because 1 mol of Br^- and 2 mol of H^+ are also involved up to and including the rate-determining step B is not correct because 1 mol of Br^- is also involved up to and including the rate-determining step D is not correct because 1 mol of Br_2O_2 is not involved in the rate-determining step	

Question Number	Answer	Mark
2	The only correct answer is B (AgBr)	1
	A is not correct because the difference between the lattice energies is not as great as for AgBr C is not correct because the difference between the lattice energies is not as great as for AgBr D is not correct because the difference between the lattice energies is not as great as for AgBr	

Question Number	Answer	Mark
3(a)	The only correct answer is C (the enthalpy change of hydration of a lead(II) ion is more exothermic than that of a nitrate ion)	1
	A is not correct because this is the lattice energy of lead(II) nitrate B is not correct because the enthalpy change of solution of lead(II) nitrate is endothermic D is not correct because the entropy change of the surroundings is negative (as the enthalpy change is positive)	

Question Number	Answer	Mark
3(b)	The only correct answer is D (-314)	1
	A is not correct because the wrong sign has been used for the enthalpy change of hydration of lead(II) ions and this is for 2 mol of nitrate ions B is not correct because the wrong sign has been used for the enthalpy change of hydration of lead(II) ions	
	$m{C}$ is not correct because this is the enthalpy change for hydrating 2 mol of nitrate ions	

Question Number	Answer	Mark
4a)	The only correct answer is C (32)	1
	A is not correct because 6 mol of unreacted N_2 and 18 mol of unreacted H_2 are also present B is not correct because the reaction is an equilibrium and does not go to completion	
	\boldsymbol{D} is not correct because 4 mol of N_2 and 12 mol of H_2 have reacted	

Question Number	Answer	Mark
4(b)	$p(NH_3)^2$	1
	The only correct answer is C ($p(N_2) \times p(H_2)^3$)	
	$m{A}$ is not correct because the reactant partial pressures should be multiplied, and the expression should be inverted	
	B is not correct because the reactant partial pressures should be multiplied	
	D is not correct because the expression should be inverted	

Question Number	Answer	Mark
4(c)	The only correct answer is A (decreasing the temperature)	1
	B is not correct because only temperature affects the value of K_p C is not correct because only temperature affects the value of K_p D is not correct because only temperature affects the value of K_p	

Question Number	Answer	Mark
5	The only correct answer is A (the value of K is less than 1)	1
	 B is not correct because this would give a positive total entropy change C is not correct because the value of K cannot be negative D is not correct because the position of equilibrium would lie to the left 	

Question Number	Answer	Mark
6	The only correct answer is D (5.4)	1
	A is not correct because this is the pH of 1 mol dm ⁻³ CH ₃ COOH B is not correct because this is the pH when the ratio is inverted C is not correct because this is the pH when the concentrations of CH ₃ COOH and CH ₃ COONa are equal	

Question Number	Answer	Mark
7	The only correct answer is B ($HCO_3^- + H^+ \rightarrow H_2CO_3$)	1
	A is not correct because this reaction provides buffer action when the pH is raised C is not correct because HCO_3^- does not dissociate when the pH is reduced	
	D is not correct because CO_3^{2-} is not present at significant concentrations in blood and in cells	

Question Number	Answer	Mark
8	The only correct answer is C (6)	1
	A is not correct because there are 6 chiral centres	
	B is not correct because there are 6 chiral centres D is not correct because there are 6 chiral centres	

Question Number	Answer	Mark
9	The only correct answer is A (the mechanism involves a carbocation intermediate)	1
	B is not correct because the mechanism is $S_N I$ C is not correct because primary halogenoalkanes do not react by $S_N I$	
	D is not correct because the main nucleophile is OH^-	

Question Number	Answer	Mark
10	The only correct answer is B (a racemic mixture is formed)	1
	A is not correct because CN ⁻ acts as a nucleophile C is not correct because the product is not optically active	
	D is not correct because the product is 2-hydroxy-2-methylpropanenitrile	

Question Number	Answer	Mark
11	The only correct answer is B (Only 1 and 2)	1
	A is not correct because acyl chlorides do not react with tertiary amines C is not correct because acyl chlorides also form amides with primary amines and do not react with tertiary amines D is not correct because acyl chlorides also form amides with secondary amines	

Question Number	Answer	Mark
12	The only correct answer is A (1
	B is not correct because the acid hydrolysis of this ester forms ethanoic acid and propan-1-ol C is not correct because the acid hydrolysis of this ester forms propanoic acid and ethanol D is not correct because the acid hydrolysis of this ester forms propanoic acid and ethane-1,2-diol	

Question Number	Answer	Mark
13	The only correct answer is B (CH ₃ COCH ₂ CH ₃)	1
	A is not correct because CH ₃ COCH ₃ has only two peaks in its ¹³ C NMR spectrum	
	C is not correct because $CH_3CH_2COCH_2CH_3$ has only three peaks in its $^{\bar{1}3}C$ NMR spectrum D is not correct because $CH_3COCH_2CH_2COCH_3$ has only three peaks in its ^{13}C NMR spectrum	

Question Number	Answer	Mark
14	The only correct answer is D (A is not correct because the singlet would have a relative peak area of 3H and a chemical shift in the range for	1
	H-C-C=O B is not correct because the chemical shifts of the quartet and singlet would be in the ranges for H-C-C=O and for H-C-O-respectively, and the singlet would have a relative peak area of 3H C is not correct because the quartet would have a chemical shift in the range for H-C-C=O	

Total for Section A = 20 marks

Section B

Question Number	Answer	Additional Guidance	Mark
15(a)(i)	An answer that makes reference to the following points: • any one or two types of bonding (1) • third type of bonding (1)	Ignore giant throughout • covalent (in SiO ₂) Ignore macromolecular Do not award simple/molecular Do not award dative/coordinate	2
		 metallic (in Mg) Allow metal ionic (in MgO) Allow ion 	

Question	Answer	Additional Guidance	Mark
Number			
15(a)(ii)	An answer that makes reference to the	Accept reverse arguments	2
	following points:	Allow particles or molecules for moles	
		Ignore any reference to standard entropies of reactants and products	
	• (as) moles (decreases) from 5 to 3 (1)		
		Do not award incorrect numbers of moles	
		Do not award incorrect explanation relating to states	
	• decreases in disorder (1)	Accept fewer ways of distributing energy (in products)	
		Accept fewer ways of arranging moles (in products)	
		Ignore just less arranged for less disordered	
		Ignore randomness for disorder	
		Ignore just decreases in entropy	

Number 15(a)(iii)				
15(a)(iii)				
	• expression for $\Delta S_{\text{surroundings}}$	(1)	Example of calculation: $\Delta S_{\text{surroundings}} = \frac{-\Delta H}{T} = \frac{-(-370 \times 10^3)}{(23.0 + 273)}$	2
	• value of $\Delta S_{\text{surroundings}}$	(1)	Allow just –(–370)/–(–370000)/370/370000 divided by any temperature in K or °C (+)1250 (J K ⁻¹ mol ⁻¹) Allow (+)1.25 kJ K ⁻¹ mol ⁻¹ Ignore SF except 1 SF Do not award any other answer	
			Correct answer with some working scores (2) If neither mark awarded, -1250 (J K ⁻¹ mol ⁻¹) / -1.25 kJ K ⁻¹ mol ⁻¹ scores (1)	

Question	Answer		Additional Guidance	Mark
Number				
15(a)(iv)			Example of calculation:	2
	• expression for ΔS_{total}	(1)	$\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} = -43.8 + \text{answer to (a)(iii)}$	
	• calculation of ΔS_{total} to 2, 3 or 4 SF	(1)	where answer to (a)(iii) is 1250 (J K ⁻¹ mol ⁻¹) $\Delta S_{\text{total}} = (+)1206 / 1210 / 1200 (J K^{-1} mol^{-1})$ Allow (+)1.206 / 1.21 / 1.2 kJ K ⁻¹ mol ⁻¹	
			where answer to (a)(iii) is -1250 (J K ⁻¹ mol ⁻¹) $\Delta S_{\text{total}} = -1294 / -1290 / -1300$ (J K ⁻¹ mol ⁻¹) Allow $-1.294 / -1.29 / -1.3$ kJ K ⁻¹ mol ⁻¹	
			TE on transcription error of -48.3 for -43.8 No TE on incorrect expression from M1	

Question	Answer	Additional Guidance	Mark
Number			
15(a)(v)	An answer that makes reference to the following point:	Ignore SiO ₂ /reaction/reactants is/are kinetically stable Ignore reactions between solids are slow	1
	 bonding / electrostatic attraction (in SiO₂) is strong or a large amount of energy is needed to break bond(s) (in SiO₂) 	Allow Mg/reactants for SiO ₂	
	(III 310 ₂)	Allow a large amount of energy is needed to break covalent / metallic bond(s)	
		Do not award any reference to the breaking of ionic bonds / intermolecular forces	

Question	Answer	Additional Guidance	Mark
Number			
15(b)(i)	An answer that makes reference to the following point:	Examples of equation:	1
	• correct equation	$Mg_2Si + 4HCl \rightarrow SiH_4 + 2MgCl_2$	
		Allow ionic equations: $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		Allow multiples Allow reversible arrow	
		Ignore state symbols even if incorrect	

Question	Answer		Additional Guidance	Mark
Number				
15(b)(ii)	An answer that makes reference to the following points:			2
	• name of shape	(1)	tetrahedral Allow tetrahedron	
	• bond angle	(1)	109.5 ^(o) Allow 109 ^(o) No TE on incorrect shape	

Question	Answer		Additional Guidance	Mark
Number				2
15(c)(i)			Example of calculation:	2
	• use of $\Delta S_{\text{system}} = \Sigma S_{\text{products}}^{\Theta} - \Sigma S_{\text{reactants}}^{\Theta}$	(1)	$\Delta S_{\text{system}} = (41.8 + 2 \times 69.9) - (204.5 + 2 \times 205.0)$	
			Allow just $\Delta S_{\text{system}} = \Sigma S_{\text{products}}^{\bullet} - \Sigma S_{\text{reactants}}^{\bullet}$	
	• calculation of $\Delta S_{ m system}$	(1)	-432.9	
	·		TE on $\Delta S_{\text{system}} = \sum S_{\text{reactants}}^{\Theta} - \sum S_{\text{products}}^{\Theta}$	
			TE on incorrect numbers of moles and transcription errors	
			Ignore units, even if incorrect	
			Ignore SF except 1SF	
			Correct answer with some working scores (2)	
			+432.9 / -297.8 / +297.8 scores (1)	

Question Number	Answer	Additional Guidance	Mark
15(c)(ii)	An answer that makes reference to the following point:	Accept reverse arguments Ignore $\Delta S_{\text{surroundings}}$ is (very) positive	1
		Ignore reaction is (highly) exothermic / ΔH is (very) negative	
	O–H bonds are strong(er than Si–H bonds)	Allow Si-O bonds are strong(er than Si-H bonds)	
		Allow (covalent) bonding in H ₂ O / SiO ₂ / products is strong	
		Allow formation of product bonds releases more energy (than is required to break reactant bonds)	
		Allow more energy required to break product bonds (than reactant bonds)	
		Ignore any reference to O=O bond strength (which is greater than O-H / Si-O)	
		Do not award intermolecular forces for bonds	
		Do not award $\Delta S_{\text{surroundings}}$ is negative Do not award reaction is endothermic / ΔH is positive	

(Total for Question 15 = 15 marks)

Question Number	Answer		Additional Guidance	Mark
16(a)(i)	• tangent drawn at $t = 0$	(1)	Example of calculation: CH ₃ CHO	3
	• calculation of gradient of tangent	(1)	gradient = (-)0.6 \div 62 = (-)0.0096774 / (-)9.6774 × 10 ⁻³ Allow value in range of 0.0086 to 0.011 TE on any tangent Ignore sign and units Ignore SF except 1SF	
	• calculation of rate in mol $dm^{-3} s^{-1}$	(1)	rate = (-)0.0096774 ÷ 60 = (-)0.00016129 / (-)1.6129 × 10 ⁻⁴ (mol dm ⁻³ s ⁻¹) Allow value in range of 0.00014 to 0.00019 / 1.4 × 10 ⁻⁴ to 1.9 × 10 ⁻⁴ TE on any concentration ÷ time value from M2 Ignore sign Ignore SF except 1SF Correct answer with tangent drawn at $t = 0$ scores (3) Correct answer with no tangent at $t = 0$ scores (2)	

Question Number	Answer		Additional Guidance	Mark
16(a)(ii)	An answer that makes reference to the following points:			2
	working to show determination of two (or more) half-life values	(1)	eg, time for [CH ₃ CHO] to fall from 0.6 to 0.3 = 43 - 0 = 43 eg, time for [CH ₃ CHO] to fall from 0.4 to 0.2 = 68 - 25 = 43 Allow half-lives in range of 42 to 44 (mins) Allow half-lives in range of 2520 to 2640 (s) Accept working from either a statement in words or from working on the graph.	
	 (constant half-life so first order and rate =) k[CH₃CHO]⁽¹⁾ 	(1)	Ignore 86 – 43 = 43 (mins) Ignore any attempt to find half-lives by extrapolation of the graph beyond 70 mins Standalone mark Do not award any other rate equation Do not award omission of k	

Question Number	Answer		Additional Guidance	Mark
16(b)			Example of calculation:	4
	• calculation of gradient	(1)	gradient = $\underline{(-8.2 - 9.4)}$ = -42718 (K) (0.0010 - 0.000588) Allow value in range of -40500 to -44500 Ignore units	
			Ignore SF except 1SF	
			Do not award omission of negative sign	
	• use of $E_a = -gradient \times R$	(1)		
	• calculation of E_a	(1)	$E_a = -(-42718) \times 8.31$ = (+)354990 TE on M1 TE on M2 for omission of negative sign only Accept use of 8.314 for 8.31 Ignore SF except 1SF Ignore units in M3	
	 calculated answer to 3SF and units 	(1)	(+)355 000 J mol ⁻¹ OR (+)355 kJ mol ⁻¹ TE on M3	
			Calculated final answer to 3SF with correct units in allowed range scores (4) gradient of -40500 gives 337 000 J mol ⁻¹ / 337 kJ mol ⁻¹ gradient of -44500 gives 370 000 J mol ⁻¹ / 370 kJ mol ⁻¹	

(Total for Question 16 = 9 marks)

Question Number	Answer	Additional Guidance	Mark
17(a)(i)	An answer that makes reference to the following points:	Ignore missing or incorrect hyphens, spaces or commas and use of capitals	2
	• but-3-enoic acid (for first isomer) (1	Accept 3-butenoic acid Allow buten-3-oic acid Allow but-3-en-1-oic acid / 3-buten-1-oic acid Allow "ene" for "en" Do not award "butan" or "butyl" for "but"	
	• 2-methylpropenoic acid (for second isomer) (1	Accept 2-methylprop-2-enoic acid Accept 2-methyl-2-propenoic acid Allow 2-methylpropen-2-oic acid Allow "ene" for "en" Do not award "propan" or "propyl" for "prop"	

Question	Answer		Additional Guidance	Mark
Number				
17(a)(ii)	An answer that makes reference to the following points:		Example of structures:	2
	 correct structure of Z-but-2-enoic acid correct structure of E-but-2-enoic acid 	(1)(1)	Allow displayed formula on any correct combination	
			Allow displayed formula, or any correct combination of formulae	
			Ignore bond lengths and bond angles	

Question	Answer	Additional Guidance	Mark
Number			
17(a)(iii)	An answer that makes reference to the following point:	Example of structure:	1
	correct structure of cyclopropanecarboxylic acid	ОН	
		Allow displayed or structural formula, or any correct combination of formulae	
		Ignore bond lengths and bond angles	

Question Number	Answer	Additional Guidance	Mark
17(b)(i)	An answer that makes reference to the following points:	If name and formula given both must be correct	1
	• K ₂ Cr ₂ O ₇ / potassium dichromate((VI))	Accept sodium salts Allow dichromate((VI) ions) / Cr ₂ O ₇ ²⁻ for K ₂ Cr ₂ O ₇	
	and		
	H ₂ SO ₄ / sulfuric acid	Allow acidified / H ⁺ Ignore concentration of acid Do not award use of HCl Do not award mention of acid as catalyst	
	and	Do not award incorrect oxidation states	
	(heat under) reflux	Ignore distillation	

Question Number	Answer	Additional Guidance	Mark
17(b)(ii)	An answer that makes reference to the following points:	Example of equation: $ (CH_3)_2C(OH)CH_2CN + 2H_2O + HCl \rightarrow (CH_3)_2C(OH)CH_2COOH + NH_4Cl $	2
	H ₂ O and HCl reactants	Allow H ⁺ for HCl Allow H ₃ O ⁺ for H ₂ O and HCl Allow H ₂ O in equation and HCl shown above arrow Ignore just HCl(aq)	
	and organic species and	M2 dependent on M1 Allow NH ₄ ⁺ for NH ₄ Cl where H ⁺ used for HCl	
	balanced	Allow multiples Allow structural, displayed, skeletal or molecular formulae for organic species Ignore connectivity in organic species Ignore state symbols, even if incorrect (CH ₃) ₂ C(OH)CH ₂ CN + 2H ₂ O + H ⁺ → (CH ₃) ₂ C(OH)CH ₂ COOH + NH ₄ ⁺ scores (2)	

Answer		Additional Guidance	Mark
An answer that makes reference to the following points:		Allow displayed or structural formula, or any correct combination of formulae	2
		If more than one type of formula given all must be correct	
		Examples of structure:	
RCOOH group converted to RCOCl group	(1)	(CH ₃) ₂ CClCH ₂ COCl scores (2)	
• (CH ₃) ₂ C(OH)CH ₂ R group converted to (CH ₃) ₂ C(Cl)CH ₂ R	(1)	CI	
	 An answer that makes reference to the following points: RCOOH group converted to RCOCl group (CH₃)₂C(OH)CH₂R group converted to 	An answer that makes reference to the following points: • RCOOH group converted to RCOCl group • (CH ₃) ₂ C(OH)CH ₂ R group converted to	An answer that makes reference to the following points: Allow displayed or structural formula, or any correct combination of formulae If more than one type of formula given all must be correct Examples of structure: (CH ₃) ₂ CClCH ₂ COCl scores (2) (CH ₃) ₂ C(OH)CH ₂ R group converted to

Question Number	Answer	Additional Guidance	Mark
17(b)(iv)	An answer that makes reference to the following point:	Allow displayed or structural formula, or any correct combination of formulae	1
		If more than one type of formula given all must be correct	
		Examples of structure:	
	correct structure of ammonium salt	(CH ₃) ₂ C(OH)CH ₂ COO ⁽⁻⁾ NH ₄ ⁽⁺⁾	
		OH O ONH ₄	
		Allow $(CH_3)_2C(OH)CH_2COO^ (+ NH_4^+)$	
		Do not award covalent O-NH ₄	
		Do not award sodium/potassium salt	

(Total for Question 17 = 11 marks)

Question	Answer	Additional Guidance	Mark
Number 18(a)	An answer that makes reference to the following points:		4
	Formula of lithium tetrahydridoaluminate(III): • LiAlH4 and Essential reaction conditions: • (dry) ether (1)	Do not award any other answer Allow anhydrous / no water Ignore any reference to heat / temperature Do not award any reference to aqueous / acid	
	Type of reaction: • reduction (1)	Ignore redox Ignore (nucleophilic) addition	
	Name of organic product with propanal: • propan-1-ol (1)	Allow 1-propanol Allow 1-hydroxypropane Ignore propanol / <i>n</i> -propyl alcohol Ignore primary alcohol	
	Name of organic product with propanone: • propan-2-ol (1)	Allow 2-propanol Allow 2-hydroxypropane Ignore isopropanol / isopropyl alcohol / sec-propyl alcohol Ignore secondary alcohol	
		Penalise structures for names in M3 and M4 once only	

Question	Answer		Additional Guidance	Mark
Number				
18(b)	An answer that makes reference to the following points:			2
	• silver mirror with propanal	(1)	Allow aldehyde for propanal Allow precipitate/coating for mirror Allow black/grey solid for silver mirror	
	no change with propanone	(1)	Allow ketone for propanone Allow any of the following for no change: no reaction / no observation / nothing / solution remains colourless / no silver mirror	

Question Number	Answer	Additional Guidance	Mark
18(c)	An answer that makes reference	Examples of equation:	3
	to the following points:	$CH_3COCH_3(aq) + 3I_2(aq) + 4NaOH(aq) \rightarrow$	
		$CH_3COO^{(-)}Na^{(+)}(aq) + CHI_3(s) + 3Na^{(+)}I^{(-)}(aq) + 3H_2O(l)$	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	• CHI ₃ product (1)		
	• CH ₃ COONa product (1)	Accept CH ₃ COO ⁻ Do not award CH ₃ COOH Do not award any other organic species	
	 remaining species and balanced 	Allow multiples	
	and	Allow CH ₃ COCH ₃ (1)	
	state symbols (1)	Allow H ₂ O(aq)	

Question	Answer		Additional Guidance	Mark
Number				
18(d)	An answer that makes reference to the following points:			3
	• filter (to collect precipitate)	(1)	Allow collect (precipitate) using Buchner funnel Ignore any reference to colour of precipitate	
	• recrystallise	(1)	Allow purify and crystallise	
	• (measure) melting temperature (of derivatives)		Allow melting point for melting temperature Do not award boiling temperature	
	and			
	compare to database / data book	(1)	Allow known set of values for database / data book Ignore (record) IR / NMR / mass spectrum	

Question Number	Answer		Additional Guidance	Mark
18(e)	An answer that makes reference to the following points: • 8 curly arrows • 6 or 7 curly arrows • 4 or 5 curly arrows • 2 or 3 curly arrows	(4) (3) (2) (1)	Example of mechanism: HO H3 H3 HO H3 H3 HO H3 H3 HO H3 H3	4

(Total for Question 18 = 16 marks)

Total for Section B = 51 marks

Question	Answer		Additional Guidance	Mark
Number				
19(a)(i)			Example of calculation:	2
	$C_5H_5NH^+K_a$:			
	• calculation of inverse log(-5.25) to 2SF	(1)	$(5.6234 \times 10^{-6} =) 5.6 \times 10^{-6}$ Do not award 6×10^{-6}	
			Do not award 6×10^{-6}	
	CHCl ₂ COOH p K_a :			
	• calculation of $-\log(4.5 \times 10^{-2})$ to 3SF	(1)	(1.3468 =) 1.35	
			Do not award 1.4 or 1.34	
			Penalise inconsistent SF once only	
			Penalise incorrect rounding once only	

Question Number	Answer	Additional Guidance	Mark
19(a)(ii)	An answer that makes reference to the following point:	Do not award C ₆ for C ₅	1
		Do not award non-square brackets	
	• $(Ka =) [\underline{H^+}] [\underline{C_5}\underline{H_5}\underline{N}]$ $[C_5\underline{H_5}\underline{N}\underline{H^+}]$	Allow [H ₃ O ⁺] for [H ⁺]	
	[C5H5INH]		
		Allow use of for C ₅ H ₅ N	
		Do not award C ₅ H ₄ NH for C ₅ H ₅ N	
		Do not award charged C ₅ H ₅ N, eg C ₅ H ₅ N ⁻	
		Allow use of $\stackrel{ }{\text{H}}$ for $C_5H_5NH^+$	
		Allow C ₅ H ₆ N ⁺ for C ₅ H ₅ NH ⁺	
		Do not award omission of charge from C ₅ H ₅ NH ⁺	

Question Number	Answer		Additional Guidance	Mark
19(a)(iii)	An answer that makes reference to the following points:			2
	• CH ₃ CH ₂ COOH ₂ ⁺ and HCOO ⁻	(1)	Allow COOH	
	• HCOOH A1 and HCOO ⁽⁻⁾ B1 and CH ₃ CH ₂ COOH B2 and CH ₃ CH ₂ COOH ₂ ⁽⁺⁾ A2	(1)	Allow A2 and B2 for A1 and B1 Allow B1 and A1 for B2 and A2 TE on M1 for HCOOH ₂ ⁽⁺⁾ and CH ₃ CH ₂ COO ⁽⁻⁾ only	

Question Number	Answer	Additional Guidance	Mark	
19(a)(iv)	This question assesses a student's ability to sh structured answer with linkages and fully-sust		6	
	Marks are awarded for indicative content and and shows lines of reasoning.	The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five		
	The following table shows how the marks sho content.	indicative marking points that is partially structured with some linkages and lines of		
	Number of indicative marking points seen in answer	Number of marks awarded for indicative marking points	reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial	
	6 5-4	4 3	structure and some linkages and lines of reasoning).	
	3-2	2	If there are no linkages between points, the	
	0	same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).		
	The following table shows how the marks sho lines of reasoning.			
		Number of marks awarded for structure and sustained lines of reasoning	If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no	
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated	2	reasoning mark(s) awarded, do not deduct mark(s).	
	throughout. Answer is partially structured with some		Comment: Look for the indicative marking points first, then consider the mark for the	
	linkages and lines of reasoning.	1	structure of the answer and sustained line of reasoning.	
	Answer has no linkages between points and is unstructured.	0	5	

Indicative points:	
• IP1: use of $[H^+] = \sqrt{(K_a \times [HA])}$	If calculations shown, pH values are 2.0775 and 1.3239
• IP2: use of pH = $-\log[H^+]$	
• IP3: indication that [HA] _{equilibrium} is lower than [HA] _{initial}	Ignore $[H^+] = [A^-]$ assumption is not valid Ignore $[H^+] > [A^-]$ Do not award $[A^-] > [H^+]$
• IP4: (because) dissociation (of both acids) is significant	Allow dissociation is not negligible Allow dissociation occurs Do not award dissociation is negligible Do not award dissociation is complete
• IP5: (calculated pH values lower than measured pH values because) [HA] is overestimated in the calculations	Do not award [H ⁺] overestimated in calculation due to dissociation of water
• IP6: (difference greatest for) CHCl ₂ COOH (as is) stronger acid or two Cl atoms in CHCl ₂ COOH are more electron withdrawing than one / stabilise anion more / weaken O–H bond more	Allow more dissociated for stronger Ignore strong acid for stronger acid Ignore CHCl ₂ COOH has larger K_a / smaller p Ka

Question Number	Answer		Additional Guidance	Mark
19(b)	An answer that makes reference to the following points:		Example of completed titration curve: pH 11 10 9 8 7 6 5 9 8 7 6 9 8 7 7 6 9 8 7 7 6 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3
	 vertical section at 25 cm³ and with height in the range of 1 to 4 pH units vertical section at 50 cm³ and 	(1)	Allow slight slope in range of 24 cm ³ to 26 cm ³	
	with height greater than 0.4 pH units • (buffered section with) pH 9.3 at 37.5 cm ³	(1)(1)	Allow any pH between 9.0 and 9.6 Allow reading of pH from midpoint volume between two vertical sections as TE on M1/M2	

Question Number	Answer		Additional Guidance	Mark
19(c)	 M1 and M2: calculation of [H⁺] at both pH values or calculation of pOH at both pH values calculation of [OH⁻] at both pH values 	(1) (1)	Example of calculation: $[H^+] = 10^{-12.43} = 3.7154 \times 10^{-13}; [H^+] = 10^{-12.00} = 1 \times 10^{-12}$ or $pOH = 14 - 12.43 = 1.57; pOH = 14 - 12.00 = 2.00$ $[OH^-] = 1 \times 10^{-14} \div 3.7154 \times 10^{-13} = 10^{-1.57} = 0.026915$ $[OH^-] = 1 \times 10^{-14} \div 1 \times 10^{-12} = 10^{-2.00} = 0.01$	5
	 M3, M4 and M5 (Method 1): calculation of moles of NaOH in 50.0 cm³ at pH 12.43 calculation of volume of NaOH required at pH 12.00 volume of water required in cm³ 	(1)(1)(1)	$0.026915 \times \frac{50.0}{1000} = 1.3458 \times 10^{-3}$ $1.3458 \times 10^{-3} \div 0.01 = 0.13458 \text{ dm}^3 = 134.58 \text{ cm}^3$ $134.58 - 50.0 = 84.58 / 84.6 / 85 \text{ (cm}^3)$ TE on M4	
	 M3, M4 and M5 (Method 2): expression for dilution calculation of volume of NaOH required at pH 12.00 volume of water required in cm³ 	(1)(1)(1)	$c_1v_1 = c_2v_2$ $v_2 = \frac{c_1v_1}{c_2} = \frac{0.026915}{0.01} \times 50.0 = 134.58 \text{ cm}^3$ $134.58 - 50.0 = 84.58 / 84.6 / 85 \text{ (cm}^3)$	

M3, M4 and M5 (Mether	od	3):
-----------------------	----	---	----

- calculation of moles of NaOH in 50.0 cm³ at pH 12.43
- (1) $0.026915 \times \underline{50.0}_{1000} = 1.3458 \times 10^{-3}$
- calculation of moles of NaOH in 50.0 cm³ at pH 12.00 and
- $0.01 \times \underline{50.0}_{1000} = 5 \times 10^{-4}$

difference in moles of NaOH

and

(1)

- calculation of volume of NaOH required (1)
- $1.3458 \times 10^{-3} 5 \times 10^{-4} = 8.458 \times 10^{-4}$

 $8.458 \times 10^{-4} \div 0.01 = 84.58 \text{ (cm}^3\text{)}$

M3, M4 and M5 (Method 4):

- difference in concentrations of NaOH
- (1) 0.026915 0.01 = 0.016915

• difference in moles of NaOH

- (1) $0.016915 \times \underline{50.0}_{1000} = 8.458 \times 10^{-4}$
- calculation of volume of NaOH required
- $8.458 \times 10^{-4} \div 0.01 = 84.58 \text{ (cm}^3\text{)}$

OHER METHODS MAY BE POSSIBLE

If no other marks awarded, calculation of [H⁺]/pOH and calculation of [OH⁻] at either pH scores (1)

(Total for Question 19 = 19 marks)

Total for Section C = 19 marks

Total for Paper = 90 marks